官方商城

官方服务号

搜索

导 航

生命益元素招商加盟
您当前的位置 : 首 页 > 新闻中心 > 行业资讯

不同分子量和构型(α、β)壳聚糖减肥降脂功能研究-甲壳素壳聚糖

2022-04-28 10:33:14

摘要:肥胖是由于卡路里的摄入与消耗不平衡造成的,在过去的几十年里,全球肥胖人群数量呈爆发式增长,使肥胖成为全球性健康隐患。然而现阶段市面上的减肥药品虽数量种类繁多,却仍存在治疗效果不佳、副作用大、易反弹等问题,使减肥药市场上既存在挑战又存在机遇。壳聚糖是一种碱性阳离子多糖,具有资源产量丰富、细胞亲和性、生物相容性好、安全无毒等独特优势,在国内外减肥降脂研究领域受到广泛的关注。平均分子量(Mw)和分子构型是评价壳聚糖的重要指标,影响壳聚糖的物理性质、化学性质、生理活性等,然而现阶段对壳聚糖减肥降脂活性的研究大多没有明确给出所使用壳聚糖的平均分子量及构型,也没有对不同平均分子量、不同分子构型壳聚糖的减肥降脂活性进行对比。


本论文从体外油脂胆固醇吸附活性、胰脂肪酶活性抑制活性,3T3-L1前脂肪细胞分化抑制活性,对饮食诱导肥胖SD大鼠减肥降脂活性三个方面进行了壳聚糖减肥降脂功能研究。


主要研究结果如下: 

 

(1)、通过体外模拟胃肠道消化环境,研究不同平均分子量α-、β-壳聚糖对油脂、胆固醇的吸附活性。结果表明平均分子量为~1、~3、~5、~7、~9 kDa的α-、β-壳寡糖均具有一定的体外油脂、胆固醇结合能力。总体而言,α-壳寡糖的体外油脂、胆固醇结合能力高于β-壳寡糖。1 g样品α-壳寡糖平均可以吸附2-8g油脂或50-65 mg胆固醇。并且,壳聚糖的油脂、胆固醇吸附能力与其平均分子量、分子构型有关,平均分子量为~3000 Da的α-壳寡糖的油脂、胆固醇吸附能力最强,分别为7.08 g.g-1和63.48 mg.g-1,当平均分子量增大或减小,其吸附能力下降。  


(2)、通过对硝基苯酚法测定不同分子量α-壳聚糖、α-壳寡糖及β-壳寡糖对胰脂肪酶活性抑制能力。结果表明,不同浓度的五种分子量α-壳聚糖(Mw=~1800k、~1500k、~1200k、~900k、~600k、~300kDa)、α-壳寡糖(Mw=~1k,~3k,~5k,~7k,~9kDa)和β-壳寡糖(Mw=~1k,~3k,~5k,~7k,~9kDa)均具有一定的胰脂肪酶抑制活性。虽然16种样品的胰脂肪酶活性抑制率均小于对照组奥利司他(5 mg/mL,抑制率93.39%),但奥利司他属于合成药物,已被证实存在副作用,壳聚糖属于天然产物,健康安全,有很好的应用前景。


(3)、通过体外诱导3T3-L1前脂肪细胞分化,模拟前脂肪细胞分化增殖过程,以不同平均分子量的α-、β-壳聚糖为样品,研究其对3T3-L1前脂肪细胞分化的抑制作用。实验结果表明:六种低分子量的α-壳寡糖(A1-6)、B1组的β-壳寡糖的细胞毒性较小,B2-5组的β-壳寡糖、~1800kDa的α-壳聚糖、2340kDa的β-壳聚糖细胞毒性较大。以细胞毒性较小、3T3-L1前脂肪细胞分化过程中的脂质生成抑制效果蕞好的A1组α-壳寡糖进行进一步实验,结果表明:细胞水平上来说,浓度为12.5,25,50μg/mL的A1均能显著抑制3T3-L1前脂肪细胞成脂分化及分化后的脂质堆积过程,降低前脂肪细胞的分化率,减小成熟脂肪细胞中的TAG浓度;分子水平上来说,浓度为25,50μg/mL的A1能够显著抑制C/EBPα的表达,抑制脂肪细胞分化及脂质堆积,达到减肥目的。  


(4)、通过饮食诱导肥胖的SD大鼠减肥降脂实验模型,以α-壳聚糖(A组)、α-壳寡糖(B组)及配方产品(海洋一号HY-1,C组)为样品,以高(1000 mg/kg)、中(500 mg/kg)、低(250 mg/kg)三种剂量进行灌胃,以奥利司他作为阳性对照,研究α-壳聚糖的减肥降脂功能。实验结果表明:A中剂量组和C中剂量组能减少肾脏周围脂肪。三种样品会使肥胖大鼠睾丸附近脂肪增多。A高剂量组和C低剂量组能升高血糖,A中剂量组、B高剂量组、B中剂量组均能降低血糖。B组和C组能降低肥胖大鼠甘油三酯的含量。三组样品均能降低肥胖大鼠总胆固醇含量,升高LDL-C含量。A高剂量组、A中剂量组、B中剂量组、B低剂量组、C低剂量组和C中剂量组能降低HDL-C含量。肝脏、心脏、肠系膜脂肪、皮下脂肪切片观察显示,给药组能抑制脂肪细胞的生长,并一定程度上减少组织损伤。  


本研究明确了不同构型、不同平均分子量的甲壳素壳聚糖的减肥降脂功能,并从细胞、基因水平对机理进行初步探究,为开发壳聚糖减肥功能食品及天然减肥药物提供理论依据。


参考文献

  [1] 薛丽群,陈盛,林渊智,等.不同分子量壳聚糖的制备及其抑菌性能的研究[J].福建师大福清分校学报.2013,(2).55-62.

  [2] 蒋小姝,莫海涛,苏海佳,等.甲壳素及壳聚糖在农业领域方面的应用[J].中国农学通报.2013,(6).170-174.

  [3] 刘含亮,孙敏敏,王红卫,等.壳寡糖对虹鳟生长性能、血清生化指标及非特异性免疫功能的影响[J].动物营养学报.2012,(3).479-486.

  [4] 秦睿睿,许文才,李东立,等.壳聚糖食品保鲜机理及应用进展[J].中国印刷与包装研究.2012,(1).7-13.

  [5] 罗红艺,赵小明,杜昱光.壳寡糖对烟草幼苗生长和光合作用及与其相关生理指标的影响[J].植物生理学通讯.2008,(6).1155-1157.

  [6] 陶希芹,王明力.壳聚糖的改性及其在农业上的应用研究[J].贵州农业科学.2007,(5).157-159.

  [7] 唐涛,薛毅,信玉华.羧甲基壳聚糖复合奥硝唑后对口腔重要厌氧菌增效抑菌作用的评价[J].实用口腔医学杂志.2007,(3).451-452.

  [8] 徐甲坤,毕彩丰,范玉华,等.羧甲基壳聚糖水凝胶制备及在药物控释中的应用[J].中国海洋大学学报(自然科学版).2007,(3).503-506.

  [9] 许青松,宫德正,谭成玉,等.壳寡糖对四氯化碳致急性肝损伤小鼠的保护作用[J].中国海洋药物.2006,(5).31-33.

  [10] 王文全,郑春霞,郝俊蓉,等.卤虫卵壳及粗甲壳素对重金属离子的吸附性[J].环境科学与技术.2005,(1).51-52,67.

标签

近期浏览: